Sri Lanka’s vein graphite

Militha Mihiranga

Carbon exists in its crystalline form as graphite. Graphene is layered in layers to make it. Under normal circumstances, graphite is the most stable form of carbon and is found in nature. In 1989, 300 kilotons of natural and synthetic graphite were used in electrodes, lubricants, and pencils. It turns into a diamond at high pressures and temperatures. It could be a better conductor of both electricity and heat.


Because sedimentary carbon compounds are reduced during metamorphism, graphite can be found in metamorphic rocks. Additionally, it can be found in meteorites and igneous rocks. Quartz, calcite, micas, and tourmaline are the minerals connected to graphite. China, Mexico, Canada, Brazil, and Madagascar are the top exporters of mined graphite by tonnage.

Troilite and silicate minerals are found alongside graphite in meteorites.

Cliftonite is the name for tiny graphitic crystals found in meteoritic iron.

Because of their unique isotopic compositions, some tiny grains can be used to date the formation of the Solar System.

They are one of the about 12 pre-Solar System mineral kinds that have been identified, and they have also been found in molecular clouds. When supernovae detonated or low to intermediate-sized stars evacuated their outer envelopes late in their lifetimes, these minerals were created in the ejecta. The second- or third-oldest mineral in the universe may be graphite.


Carbon sheets with trigonal planar structures make up graphite. Graphene is the name of the individual layers. The bond length of the carbon atoms in each layer’s honeycomb lattice is 0.142 nm, while the space between the planes is 0.335 nm. The relatively weak van der Waals bindings and the frequent presence of gases in layer bonds allow the graphene-like layers to glide past one another and be readily separated.

As a result, the electrical conductivity parallel to the layers is roughly 1000 times lower.

Alpha (hexagonal) and beta are the two types of graphite (rhombohedral). Their qualities are similar. They differ in how the graphene layers are stacked: ABA stacks in energetically less stable and less prevalent beta graphite, while ABC stacks in alpha graphite. The beta form can be mechanically changed into the alpha form, and when heated above 1300 °C, the beta form turns back into the alpha form.


Graphite is entirely safe, environmentally beneficial, and chemically inert. It is divided into natural, macrocrystalline, and microcrystalline synthetic graphite. The graphite crystal’s basic building block comprises six carbon atoms in a hexagonal pattern. The two-dimensional lattices can be easily moved against one another yet are relatively stable within themselves.


Vein graphite, commonly referred to as lump graphite, has a unique origin because it appears to have been created by hydrothermal fluids. Vein graphite has deposited with graphitic carbon contents above 90%, with purities up to 99.5% being feasible.

The only nation that mines considerable amounts of vein graphite is Sri Lanka. The Bogala Mine in Sri Lanka, which supplies most of the nation’s graphite, is owned by Graphit Kropfmühl.

Post Comments:

Leave a Comment

Your email address will not be published. Required fields are marked *

Translate »
× How can I help you?